
Perturbation method in gas-assisted power-law ¯uid displacement
in a circular tube and a rectangular channel

Fethi Kamis,li*,1, Michael E. Ryan
Department of Chemical Engineering, State University of New York at Buffalo, Amherst, NY 14260, USA

Received 10 June 1998; received in revised form 25 May 1999; accepted 7 June 1999

Abstract

In this paper the two dimensional ¯ow of a power-law ¯uid is studied analytically using a singular perturbation method in order to

determine the residual liquid ®lm thickness of power-law ¯uids on the wall of a circular tube or a rectangular channel when displaced by

another immiscible ¯uid. Inner and outer expansions are developed in terms of a small parameter C
1=3
A (modi®ed capillary number). A

differential equation for the shape of gas bubble is solved numerically in order to determine the inner solution. The method of matched

asymptotic expansions is used to match the inner and outer solutions. This approach indicated that the residual liquid ®lm thickness of non-

Newtonian ¯uids increases with decreasing power-law index. # 1999 Elsevier Science S.A. All rights reserved.
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1. Introduction

The motion of long bubbles into Newtonian ¯uids con-

®ned in horizontal cylindrical tubes or channels of rectan-

gular cross-section (Hele±Shaw cell) has been studied for

many years. When a less viscous ¯uid displaces a more

viscous ¯uid from the gap between two closely spaced

parallel plates, the interface develops a tongue-like shape

with the less viscous ¯uid penetrating into the more viscous

¯uid. Similarly, when air is forced into one end of a circular

tube containing a viscous liquid, it forms a round-ended

column or bullet-like shape which travels down the tube

forcing some liquid out at the far end and leaving a fraction

of the liquid m, in the form of an annular layer covering the

wall. In the case of a square channel the shape of the less

viscous ¯uid penetrating into the more viscous ¯uid depends

on the velocity of the penetrating ¯uid. If the velocity of the

penetrating ¯uid (called the bubble or ®nger hereafter) is

larger than a certain limiting value, the bubble assumes a

bullet-like shape; otherwise, the bubble conforms to the

shape of the square channel. In a rectangular channel, if the

capillary number, CA = �ub/� is not too large, a single

steady-state tongue-like shape moves through the cell with

constant velocity ub, where � is the viscosity of the driven

liquid, ub is the bubble velocity, and � is the gas±liquid

interfacial tension. In a circular tube or square channel the

bullet-like shape of the bubble persists even at a very large

capillary number. In other words, the ®ngering effect does

not occur in the case of a long bubble advancing in either a

circular tube or a square channel at large capillary numbers.

Fairbrother and Stubbs [20] performed the ®rst experi-

ments to determine the amount of liquid left inside a tube

when it is displaced by another immiscible ¯uid. They

determined the ¯ow rate of the liquid by measuring the

motion of the gas interface in the tube. When the tube is not

completely ®lled with the liquid, the gas interface will move

faster than the average velocity of the liquid due to the

deposition of a thin ®lm of liquid on the walls of the tube and

if the tube is long enough, it will blowout somewhere within

the tube. An empirical correlation for the fraction of the

liquid deposited on the walls of the tube was formulated as

follows:

m � ubÿu� �
ub

� 1:0C
1=2
A � �ub

�

� �1=2

This result was found satisfactory for capillary numbers

between 10ÿ3 and 10ÿ2.

Isothermal gas-assisted displacement of Newtonian

liquids in circular tubes was also experimentally studied

by Taylor [1]. By plotting the fraction of the liquid as a
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function of the capillary number, he collapsed the data on to

a single curve, and showed that this fraction asymptotically

approached the value of 0.56 for a capillary number nearly

equal to 2. Cox [5,6] extended Taylor's [1] result to capillary

numbers up to 10 and showed that the limiting fraction of

the liquid deposited on the walls of the tube was approxi-

mately 0.6. His theoretical analysis resulted in a fourth-

order differential equation in terms of the stream function.

Inertial and gravitational forces were neglected. The stream-

lines were assumed to be a speci®c function of the spatial

coordinates. The governing equations were expressed in

matrix form and solved numerically.

Bretherton [2] also undertook a theoretical analysis of this

problem for circular capillaries. He found an approximate

solution to this problem for a circular cross-section by the

method of matched asymptotic expansions. The idea behind

this theoretical treatment is that for suf®ciently small CA the

viscous stresses appreciably modify the static pro®le of the

bubble only very near to the wall. In this region the

lubrication approximation gives a good description of the

¯ow ®eld and of the interface pro®le. In the center of the

capillary, the static pro®le is valid and there is a region of

overlap in which the two solutions are matched. Using the

lubrication approximation which requires quasi-unidirec-

tional ¯ow in the thin liquid ®lm and assuming the slope of

the ¯uid±¯uid interface to be small, it can be shown that the

velocity pro®le is parabolic. The boundary conditions for

steady ¯ow are the no slip condition at the capillary wall,

and tangential stress equal to zero at the ¯uid interface. The

bubble is assumed to be inviscid resulting in a constant

pressure within the bubble. The pressure in the liquid ®lm is

given by the pressure drop across the interface which is

approximated by the Young±Laplace equation. Bretherton

[2] also systematically explored a number of possible causes

for the discrepancy between the analysis and experimental

data. However, none of these could provide a satisfactory

explanation. Schwartz et al. [24] theoretically and experi-

mentally considered the same problem and found some

differences in liquid ®lm thickness for suf®ciently long

bubbles, as compared to short bubbles.

Another experimental study by Marchessault and Mason

[22] used air bubbles in a dilute aqueous solution of

potassium chloride. Film thicknesses were inferred from

resistance measurements and were found to be substantially

larger than those reported by Bretherton [2]. The residual

wetting layer of the displaced liquid will vary with the

velocity of advance of the interface. Park and Homsy [3]

theoretically demonstrated that the two-dimensional version

of the Bretherton [2] problem is an appropriate local solu-

tion to describe the phenomenon in terms of determining

residual liquid ®lm thickness and pressure drop across the

bubble front.

Ratulowski and Chan [10] theoretically and experimen-

tally investigated a single discrete bubble and the motion of

a long bubble in a circular tube and square channel. They

determined the fraction of liquid deposited on the walls of

the tube or channel and the pressure drop across the bubble

front. According to their study, a single isolated bubble

resembles an in®nitely long bubble in terms of determining

the ®lm thickness and pressure drop across the bubble front

if the length of the bubble exceeds the channel width. Their

analysis is only valid for CA > 3 � 10ÿ3.

Kolb and Cerro [17] studied the isothermal gas-assisted

displacement of a Newtonian liquid from a channel of

square cross-section and showed that the liquid deposited

on the wall of the square tube also approaches an asymptotic

limit (0.64) at high capillary numbers. Above CA = 0.1 the

gas forms a circular hollow core and thicker liquid deposi-

tion; below CA = 0.1 the hollow core takes on the square

cross-section of the tube as the deposition thickness is

reduced. The above study was extended (Kolb and Cerro

[11]) by adding the lubrication approximation for inter-

mediate to large capillary numbers where the ¯ow is

axisymmetric. In their work the ®lm thickness on the walls

of the square channel can be predicted as a function of

capillary number since the velocity pro®le of the ¯uid

¯owing between the bubble and the square channel walls

is known. It was claimed that the lubrication approximation

solution is in good agreement with experimental data for

values of capillary number between 0.7 and 2.0.

Unlike previous investigators, Huzyak and Koelling [9]

experimentally investigated the gas-assisted displacement

of non-Newtonian ¯uids deposited on the walls of a tube.

They examined the effect of ¯uid elasticity and tube dia-

meter on the fractional coverage. They concluded that

unlike Newtonian ¯uids, the fractional coverage for viscoe-

lastic ¯uids did not reach an asymptotic value but continued

to increase, attaining a value in excess of 0.73, and that the

fractional coverage of the viscoelastic ¯uids decreases with

increasing tube diameter.

Ro and Homsy [4] performed an asymptotic analysis of

the gas-assisted displacement of a non-Newtonian ¯uid in a

Hele±Shaw cell. The effects of normal stress and shear

stress thinning in determining the ®lm thickness and the

pressure jump across the interface were examined. Viscoe-

lastic ¯uids were modeled by an Oldroyd-B constitutive

equation and the solutions for the constant ®lm thickness

region and the static meniscus region were matched in the

transition regime as for the Newtonian case (see Park and

Homsy [3]).

The planar geometry or Hele±Shaw cell consists of two

closely-separated parallel plates having a distance 2d

between them. The sides of this rectangular channel are

at a distance 2Zo apart where d� Zo. A parameter � is

de®ned as (thickness of gas bubble)/(distance between the

plates). For the cylindrical tube � is de®ned as (diameter of

the bubble)/(diameter of the tube). In the rectangular chan-

nel the thickness of the tongue-like shape is 2�d and its

width is 2�wZo, where the parameter �w is equal to (width of

the bubble)/(width of the rectangular channel).

The determination of the value of � and �w has been a

subject of much interest. The determination of �w as a
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function of capillary number, CA, for different cell aspect

ratios, Zo/d, has been examined experimentally by Saffman

and Taylor [26], Pitts [23], and Tabeling et al. [25]. Saffman

and Taylor [26] and Pitts [23] found that the value of �w

decreases monotonically to 0.5 when the bubble velocity

is increased. In contrast, Tabeling et al. [25] reported that

the value of �w never decreases to 0.5 when the bubble

velocity is increased. The problem was reconsidered by

McLean and Saffman [21] by including surface tension

effects due to the lateral curvature of the interface of the

advancing ®nger. In their numerical study the value of �w

was close to 0.5 at large bubble velocity which is in good

agreement with the experimental data. At low velocities (i.e.

Cb = 12 CA(Zo/d)2 < 100), the agreement with experiment

was poor since the ®nger sizes predicted by the theory were

signi®cantly below those actually measured. They found

that the incorporation of surface tension and cell aspect ratio

did not remedy or reduce the disagreement between theory

and experiment in terms of calculating the value of �w as a

function of Cb. The approach of Bretherton [2] was recon-

sidered by Park and Homsy [3] in the horizontal Hele±Shaw

cell at very low capillary number. The problem was solved

using a perturbation method with an asymptotic expansion

of CA
1/3 and the ratio of the gap width to the transverse

characteristic length �e = d/Zo as small quantities. They

obtained relationships between �, CA, and �e for calculating

the ®lm thickness and pressure jump across the bubble front.

The resulting expressions were compared with the results of

Bretherton [2] and Landau and Levich [16] and were

considered to give improved results.

Reinelt [7] extended his earlier work by determining the

perturbation solution of the axisymmetric ¯ow problem for

small values of CA and � = d/Zo. In his study, some of the

boundary conditions were improved by incorporating the

®lm thickness into the kinematic boundary condition and

taking into account the dependence of �p on the capillary

number. The problem was also numerically solved using a

conformal mapping method and the numerical results were

presented in another paper (Reinelt [12]). Although the

inclusion of the effects of the ®lm thickness variation and

the lateral and transverse curvature on the interface bound-

ary conditions improved the quantitative agreement

between the experimental and numerical results, it did

not remove the discrepancy associated with different ®nger

widths.

In this paper the gas assisted displacement of a power-

law ¯uid in a tube or a rectangular channel was studied

analytically using a singular perturbation method. Also

the problem is examined experimentally in order to

determine the effect of non-Newtonian ¯uid rheology such

as shear thinning on the liquid fraction deposited on the

wall as a function of capillary number (see Kamis,li [8]).

However, the experimental results are not presented

here except the residual liquid ®lm thickness of Newtonian

and some non-Newtonian ¯uids as a function of capillary

number.

2. Experimental

The experimental arrangement consists of a gas supply

tank, pressure transducer, transparent plastic or glass tubes/

channels and associated valves and ®ttings as shown in Fig.

1. The volume of the gas supply tank was chosen to be very

large in comparison to the volume of the gas within the tube

or channel in order to minimize pressure ¯uctuations during

the experiments. Pressurized air was used as the gas and was

supplied by a local compressed air line and monitored with a

pressure gauge mounted on the tank. The desired pressure

level can be accurately adjusted by keeping valve B open

and D closed and reading the pressure from the pressure

transducer for a particular setting of valve C. The line

pressure is also independently measured using a pressure

transducer situated close to the channel assembly. Plastic or

glass tubes having a diameter 4.763 mm and a length of

50 cm were used. Caliper measurements showed that the

inner radius along the tube length had a maximum variation

of �0.065 mm.

Fig. 1. Schematic diagram of the experimental apparatus.
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Isothermal experiments have been conducted to measure

the displacement of the gas±liquid interface as a function of

the applied pressure differential. The velocity of the inter-

face and the residual liquid ®lm thickness have been deter-

mined for Newtonian, non-Newtonian, and viscoelastic

liquids (see Kamis,li [8] for details). Viscosity was measured

using a Haake Rotovisco (Model RV12) as well as a

calibrated glass capillary viscometer. The dimensionless

groups are based on the power-law parameters evaluated

from the viscometric data obtained in the Haake viscometer

(K = 58.75 (Pa sn ) and n = 0.485 for 1% HEC, and K = 2.85

(Pa sn) and n = 0.652 for 1% CMC). Experiments were

performed in two types of tube arrangement namely open

tubes and valve-mounted closed tubes. In the tube open to

the atmosphere, the tube was initially ®lled with liquid to a

distance of 15 cm. The end of the tube was open to the

atmosphere. The velocity of the gas bubble and displaced

liquid were determined using a stop-watch and observed

positions of the gas±liquid interface. The moving bubble

attained its ®nal shape within a few diameters of the gas

injection point and translated unchanged along the length of

the tube. The velocity of the gas bubble and the velocity of

the liquid displaced by the gas are dependent upon how

much liquid there is between the nose of the bubble and the

moving liquid front.

On the other hand, the valve-mounted closed tubes result

in a uniform bubble velocity since the ¯ow resistance of the

¯uid in the channel is negligible when compared with the

resistance valve. In this type arrangement experiments were

conducted using a completely ®lled tube having 4.763 mm

diameter, 50 cm length, and a valve at the one end. The valve

provides much more resistance than that of liquid ¯ow.

Thus, a uniform bubble velocity along the axial direction

was obtained. The maximum variation in the bubble velo-

city was found to be less than 5% for most of the test ¯uids.

The capillary numbers were calculated from the average

bubble velocity. In this case, the fraction of liquid deposited

on the tube wall was calculated by weighing the liquid

expelled by the long gas bubble since the initial amount of

liquid within the tube is known from the liquid density, tube

diameter, and length.

In this paper, the results of valve-mounted closed tubes

are presented in order to compare with the results of an

analysis of a singular perturbation method for low capillary

numbers.

3. Results of experiment

The fraction of the liquid deposited on the wall of the tube

for the different liquids is plotted in Fig. 2 as a function of

the capillary number for a particular tube diameter of

4.763 mm. The experimental data for the Newtonian ¯uid

are in close agreement with Taylor's [1] experimental data

as can be seen in Fig. 2. Taylor used corn syrup as a

Newtonian ¯uid and collapsed the data on to a single curve

and showed that the fraction of the liquid deposited on the

wall asymptotically approached the value of 0.56 for a

capillary number nearly equal to 2. Different capillary

numbers for each tube are obtained by changing the pressure

of the gas. Each experiment was repeated six times in order

to check repeatability. The coating of the liquid on the walls

of the tube depends primarily on how fast the gas moves

through the liquid. Increasing gas pressure, larger radii and

lower viscosity reduce the ¯ow resistance and result in

higher bubble velocity and higher residual liquid ®lm

thickness on the tube wall.

4. Perturbation method

The gas-assisted displacement process can be considered

as a singular perturbation problem. This approach for the

case of a Newtonian ¯uid was ®rst provided by Bretherton

[2] by means of a perturbation expansion in CA
1/3. Later

Park and Homsy [3] and Reinelt [7] expanded the solution in

both CA
1/3 and � = b/d and made some improvement in

determining the ®lm thickness and the pressure at the nose

of the bubble. Recently the same method was applied by Ro

and Homsy [4] for a viscoelastic (Oldroyd-B) ¯uid.

In the perturbation method it is assumed that the bubble is

moving with a suf®ciently small value of the capillary

number CA and the interface is almost parallel to the wall

of the tube or channel. Thus, the ¯uid motion in this region

can be treated as if the region were planar and not annular.

The solution for the ®lm thickness is therefore valid for both

two-dimensional and axisymmetric ¯ow. Therefore the

subsequent analysis employs the continuity equation and

equation of motion for two-dimensional ¯ow. Inner and

Fig. 2. The results of perturbation analysis for various values of power-

law index n and the experimental data for Newtonian and non-Newtonian

fluids deposited on the walls of the tube as a function of capillary number.
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outer expansions are developed in terms of a small para-

meter C
1=3
A for a non-Newtonian ¯uid. The method of

matched asymptotic expansions is used to match the inner

and outer solutions (Nayfeh [19] and Van Dyke [18]).

In this analysis, the origin of the frame of reference is

taken to be the nose of the bubble which is moving in the

positive x-direction.

Consider the motion of a gas bubble into an incompres-

sible Newtonian or non-Newtonian liquid as shown sche-

matically in Fig. 3. For convenience, velocities are non-

dimensionalized by the uniform velocity ub, the transverse

and axial coordinates by the characteristic length d, and the

pressure by �/d. The characteristic length d is taken to be

either the radius of the tube or half of the distance between

the parallel plates. The equation of continuity and motion

are given as follows:

1

_ya

@

@ _y
� _ya _u� � @ _v

@ _x
� 0 (1)

�
@ _v

@_t
� _v

@ _v

@ _x
� _u

@ _v

@ _y

� �
� ÿ @ _p

@ _x
ÿ 1

_ya

@

@ _ya � _ya� yx� � @� xx

@ _x

� �
(2)

�
@ _u

@_t
� _v

@ _v

@ _x
� _u

@ _u

@ _y

� �
� ÿ @ _p

@ _y
ÿ 1

_ya

@

@ _ya � _ya�yy� � @�xy

@ _x

� �
(3)

The parameter a has a value of either 0 or 1 depending on the

geometry (0 corresponds to the planar case and 1 corre-

sponds to a cylindrical geometry). � ij is the stress tensor and

_p is the pressure. The velocity components _v and _u are in the

_x and _y directions, respectively. The _y axis is taken normal to

the channel plates (or tube wall) with the origin at the mid-

plane (or tube axis). Thus _y has the value of�d for the planar

case (or d for the cylindrical case) at the solid boundaries.

The origin is assumed to be located at the nose of the bubble

and consequently the velocity is independent of time with

respect to this frame of reference. Dimensionless variables

are defined as follows:

x � _xÿubt� �
d

; y � _y

d
; H �

_H

d

v � _v

ub

; u � _u

ub

; p � _p

�=d� �

In this analysis, a power-law model is considered where the

viscosity is defined as

_� � K
1

2
IID

� ���nÿ1�=2�

where II� is the second scalar invariant. The viscosity in

dimensionless form becomes

_� � K
ub

d

� �nÿ1

2
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_� � M�

where M = K(ub/d)(nÿ1) can be considered as the apparent

viscosity at a (nominal ) shear rate of (ub/d) and � is

2
@ _v
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By taking a = 0 Equations (1)±(3) can be expressed in

dimensionless form as

@u

@y
� @v

@x
� 0 (4)
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@

@x
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� @
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� @v
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@p

@y
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@

@x
�

@u

@x
� @v

@y
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� 2

@

@y
�
@u

@y
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(6)

where CA = Mub/� may be regarded as a modified capillary

number and Re/CA = (d�/M) (�/M) was taken to be less than

unity. In this analysis, the no-slip condition is applied on the

solid boundaries. In order to establish the appropriate

interfacial conditions, it is assumed that the viscosity of

the gas within the bubble is negligible when compared with

the viscosity of the fluid exterior to the bubble. It is also

assumed that the displaced non-Newtonian liquid wets the

walls of the tube or channel and leaves a film of uniform

thickness on the walls. Shear stress thinning is described by

the power-law model. In this analysis the problem is solved

using a perturbation method in an expansion of the modified

capillary number in powers of C
1=3
A .

The kinematic boundary condition at the interface is

given by

dy

dx
� u

v
(7)

The tangential stress boundary condition at the interface is

independent of frame of reference and is given by

� yynyty � � xynxty � � yxnytx � � xxnxtx � 0 (8)

The difference in the normal stress on the two sides of the

interface is balanced by surface tension and is expressed as

� yyn2
y � � yyn2

x � 2� yynxny � ÿp0 � �_R (9)

Fig. 3. Schematic diagram of gas-assisted displacement for different

regions (II: transition region, III: capillary static region).
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where � is the total stress tensor, and n and t are unit vectors

normal and tangent to the interface, respectively and sub-

script x and y denote their components. Also _R is the

principal radius of curvature of the interface and p0 is the

pressure within the gas bubble.

Substituting the stress tensor and the expressions for nx

and ny into Eqs. (8) and (9) gives

ÿ2
dy

dx
vxÿuy

ÿ �� 1ÿ dy

dx

� �2
( )

ux � vy

ÿ �" #
� 0 (10)

p � ÿ 1

R
� 2CA� 1� dy

dx

� �2
" #ÿ1

� dy

dx

� �2

vx � uyÿ dy

dx

� �
ux � vy

ÿ �( )
(11)

In order to do appropriate scaling, the flow region can be

divided into four regions as shown in Fig. 3. The flow

regions I, II±III, and IV represent the thin film region, the

meniscus front region, and the parallel or tubular flow

region, respectively. The meniscus front region can be

divided into two subregions: for small CA, a capillary static

region (III) where the shape of the interface is almost

circular and the transition region (II) where the circular

shape of the interface is deformed by viscous forces and

shear thinning effects. The hydrostatic, nearly circular inter-

face in the capillary static region is due to the dominance of

pressure and interfacial tension in that region. The presence

of the transition region allows matching of the solution in

the capillary static region to the solution in the constant film

thickness region. As will be seen later, the transition region

is important since shear thinning effects have the greatest

impact in that region.

In order to obtain the leading order terms in the outer

expansion when CA! 0 Eqs. (5) and (6) become

p0
x � 0 and p0

y � 0

where the superscript (0) denotes the zeroth order approx-

imation in the outer expansion. p0
x � p0

y � 0 implies that the

leading order approximation to the pressure p0(x, y) is

constant. In order to determine the value of this constant,

the interfacial boundary conditions have to be examined

when CA! 0. As can be seen in Eq. (11), the viscous force

term goes to zero when CA! 0 and the gas bubble fills the

entire tube or channel. This implies that �! 1 and the

radius of curvature will be equal to the radius of the tube.

When CA! 0, Eq. (11) becomes

p0 � ÿ 1

R
� h0

xx 1� h0
x

ÿ �2
h iÿ3=2

(12)

In order to obtain the static meniscus, the above equation is

integrated subject to the conditions

hx!1 and h � 0 at x � 0

The solution of Eq. (12) is

h0�x� � ÿ 1

p0
1ÿ p0x� 1
ÿ �2

h i1=2

(13)

Since the bubble fills the entire tube and the pressure is

equal to the radius of curvature, the pressure must therefore

be equal to 1. In the transition region, the problem has to be

rescaled in order to apply the lubrication approximation. In

this region, the pressure, viscous force, interfacial tension

and shear thinning behaviour are all important. The inner

variables may be rescaled in a manner similar to the New-

tonian case as follows:

~v � v; ~u � u

C
1=3
A
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�2�nÿ1��=3
A

~x � �x� l�
C
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A
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C

2=3
A

; ~y � �y� l�
C

2=3
A

The viscosity becomes
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From the above Eq. (14) ~� � �@~v=@~y�nÿ1
when CA! 0.

Eqs. (5) and (6) with rescaled variables are given by

~p~x � 2C
2=3
A

@

@~x
~�
@~v

@~x

� �
� @

@~y
~� C

2=3
A

@~u

@~x
� @~v

@~y

� �� �� �
(15)

~p~y �
@

@~x
~� C

4=3
A

@~u

@~x
� @~v

@~y

� �� �
� 2C

2=3
A

@

@~y
~�
@~u

@~y

� �� �
(16)

When CA! 0, Eqs. (15) and (16) become

~p~x �
@

@~y
~�
@~v

@~y

� �
~p~y � 0

The equation of continuity and other boundary conditions

are given by

~v~x � ~u~y � 0

~v � ÿ1 at ~y � 0

~v~y � 0 at ~y � ~h

~u�~x; 0� � 0

When CA! 0, the boundary conditions with rescaled vari-

ables at the interface (Eqs. (7), (10) and (11)) at ~y � ~h
become

~u�~x; ~h� � ~h~x~v�~x; ~h�
~v~y�~x; ~h� � 0

~p�~x; ~h� � ~h~x~x

~p�~x;~y� � ~p�~x�
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The expansion of all unknown quantities in powers of the

modified capillary number C
1=3
A can be done as follows:

p�x; y� �
X1
i�0

p�x; y�iC�1=3�i
A

v�x; y� �
X1
i�0

v�x; y�iC�1=3�i
A

u�x; y� �
X1
i�0

u�x; y�iC�1=3�i
A

h�x; y� �
X1
i�0

h�x; y�iC�1=3�i
A

��v; u� �
X1
i�0

��v; u�iC�1=3�i
A

Substituting these expansions into the above expressions

gives the zeroth order approximation as follows at ~y � ~h
0�~x�

~u0�~x; ~h0� � ~h
0

~x~v
0�~x; ~h0� (17)

~v0
~y�~x; ~h

0� � 0 (18)

~p0�~x; ~h0� � ~h
0

~x~x (19)

~p0
~x �

@

@~y
~�
@~v0

@~y

� �
(20)

~p~y � 0 (21)

~v0
~x � ~u0

~y � 0 (22)

~v0�~x; 0� � ÿ1

~u0�~x; 0� � 0

As in the Newtonian case, a third-order differential equation

in h may be obtained from Eqs. (17), (19), (20) and (22).

From Eq. (20)

~v0 � �~p
0
~x��

�� 1
ÿ ÿ~y� ~h

0
� ���1

� ~h
0

� ���1
� �

ÿ1 (23)

where � = 1/n. Eq. (23) is subject to the boundary condi-

tions ~v0
~y�~x� � 0 at ~y � ~h and ~v0 � ÿ1 at ~y � 0.

From Eqs. (17), (22) and (23) with the given boundary

conditions the following equation was obtained.

ÿ~h
0

~x � ÿ
�

�� 1
~p0

~x~x ~p0
~x

ÿ ���ÿ1� ~h
0

� ����2�ÿ ~p0
~x

ÿ �� ~h
0

� ����1�
~h

0

~x

(24)

Integrating Equation (24) and taking the derivative of Eq.

(19) with respect to x and substituting gives

~h
0

~x~x~x �
��� 2��~h0ÿ~b�
�~h0���2

" #1=�

(25)

The integration constant is obtained from the condition
~h

0 � b as ~x!ÿ1.

Since Eq. (25) is an ordinary differential equation, it can

be solved numerically. Eq. (25) can be expressed in transla-

tion form since it is an autonomous equation. The following

transformation is introduced

X � �� 2� �1=3� ~x� ~x0� �
~b
�1�2��=3�

and H �
~h

0

~b

With this transformation Eq. (25) becomes

HXXX � Hÿ1

H��2

� �1=�

(26)

Since Eq. (26) is a third-order equation, the solution will

contain three constants. It is expected that two of these three

constants have to be discarded because they are associated

with terms that grow exponentially when ~x!1 as in the

Newtonian case. Although the fluid is non-Newtonian, the

Newtonian approximation can be used for the initial con-

ditions because the shape of the interface can be expressed

in exponential and quadratic form according to the region

(H! 1 as X!ÿ1 for both the Newtonian and non-New-

tonian case). Therefore identical initial conditions to the

Newtonian case are used in order to integrate Eq. (26)

numerically. The constants of the quadratic equation are

obtained from numerical integration of Eq. (26) as a func-

tion of the initial conditions. When X!ÿ1, the solution

becomes independent of �, H!1 and the solution of Eq.

(26) can be expressed as follows:

H � AX2 � BX � C (27)

Table 1 is obtained using the same initial conditions for each

value of a in conjunction with Eq. (27), where A, B, and C

are the curvature coefficients.

The inner solution and outer solution have now been

determined in terms of h. The inner and outer solutions

have to match somewhere in the transition region. The

asymptotic matching is accomplished at ~x!1 for the inner

solution and at ~x!ÿl for the outer solution. The inner

solution, Eq. (27) is expressed in terms of the original

variables as

Table 1

Constants of Eq. (27) as a function of power-law index

a 1.00 1.25 1.50 2.00 3.00 4.00 5.00

A 0.3215 0.4042 0.4732 0.5806 0.7212 0.8083 0.8689

B 0.0737 2.4482 4.2366 6.7329 9.5743 11.1068 12.0215

C 2.8348 6.9668 13.3160 26.0125 43.8635 63.2813 88.2046
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~h
0 � ÿ1� A~b��� 2�2=3�

~b
2�1�2��=3�

" #
�x� l�2 � C

1=3
A

� 2A~b��� 2�2=3�

~b
2�1�2��=3�

~x0 � B~b��� 2�1=3�

~b
2�1�2��=3�

" #
�x� l� � C

2=3
A

� A~b��� 2�2=3�

~b
2�1�2��=3�

~x2
0 �

B~b��� 2�1=3�

~b
�1�2��=3�

~x0 � ~bC

" #
(28)

The value of l can be determined from Eq. (13) with the

matching condition h0!ÿ1 as ~x!ÿl. This implies l = 1 and

Eq. (13) may be expressed using a Taylor series expansion

as

h0�x� � ÿ�1ÿ 1
2
�x� 1�2 � 0��x� 1�4�� (29)

Comparing Eq. (29) with Eq. (28), the asymptotic matching

to O C0
A

ÿ �
gives

~b � 2A��� 2�2=3�
h i3�=��2

In order to match other terms in the inner expansion, a

higher-order expansion is required for the outer solution.

This can be done by substituting a higher-order expansion of

the variables in powers of C
1=3
A into Eq. (11).

It can be seen that the viscous terms will not contribute

until powers of O(CA) when the higher-order expansion of

the variable in powers of C
1=3
A is substituted into Eq. (11).

This means that p1 and p2 are constant and equal to the

radius of curvature. Therefore p1 and p2 are

p1 � h1
xx 1� �h0

x�2
h iÿ3=2

ÿ3h1
xh0

xh0
xx 1� �h0

x�2
h iÿ5=2

(30)

p2 � h2
xx 1� �h0

x�2
h iÿ3=2

ÿ3 h1
xh0

xh1
xx � h0

xh2
xh0

xx � 1
2
�h1

x�2h0
x

� �
� 1� �h0

x�2
h iÿ5=2

(31)

The solution of Eq. (30) is

h1�x� � ÿp1x 1ÿ�x� 1�2
h iÿ1=2

(32)

A Taylor series expansion of Eq. (32) about x!ÿ1 gives

h1�x� � p1ÿp1�x� 1� � 0 �x� 1�2
� �

(33)

If Eq. (33) is compared with Eq. (28) to powers of O�C1=3
A �,

it can be found that p1 must be equal to zero. Therefore ~x0

can be calculated from this matching condition which is

~x0 � ÿ
~b
�1�2��=3�

B

2A��� 2�1=3�

Since h1 is equal to zero from the matching to powers of

O C
1=3
A

� �
, Eq. (31) becomes

p2 � h2
xx 1� �h0

x�2
h iÿ3=2

ÿ3 h0
xh2

xh0
xx

ÿ �
1� �h0

x�2
h iÿ5=2

(34)

The solution of Eq. (34) is

h2�x� � ÿp2x 1ÿ�x� 1�2
h iÿ1=2

(35)

A Taylor series expansion of Eq. (35) about x!ÿ1 gives

h2�x� � p2ÿp2�x� 1� � 0 �x� 1�2
� �

(36)

Comparing Eq. (36) with Eq. (28) in terms of powers of C
2=3
A

gives

p2 � A~b��� 2�2=3�

~b
2�1�2��=3�

~x2
0 �

B~b��� 2�1=3�

~b
�1�2��=3�

~x0 � ~bC

The following relationships are obtained up to powers of

O C
2=3
A

� �
as ~x!1 and x!ÿ1.

� � 1ÿ~bC
2=3
A

p � 1� p2C
2=3
A

h � ÿ1� p2C
2=3
A (37)

Since the expansions are up to powers of O C
1=3
A

� �
, Eq. (37)

is unfortunately valid only for very small values of the

modified capillary number CA.

5. Results and discussion

The values of � were calculated analytically as a function

of the modi®ed capillary number, CA, by varying the power-

law index, n. The results are shown in Fig. 4. As can be seen

in the ®gure, the values of �, as a function of CA, decrease

with decreasing power-law index. In other words, the liquid

®lm thickness increases with decreasing power-law index.

Also, the valid range of the method decreases with decreas-

ing power-law index.

Although the perturbation analysis provides reasonable

agreement with experimental data over a small range of

capillary number (see Bretherton [2]) for a Newtonian ¯uid,

it does not provide the same agreement between experiment

and theory for non-Newtonian ¯uids. In the perturbation

method l may be calculated from the following expression

for the case of a non-Newtonian ¯uid.

� � 1ÿ~bC
2=3
A and ~b � 2A��� 2�2=3�

h i3�=��2

Therefore the fraction of liquid deposited on the walls is

given by

m � ~bC
2=3
A for rectangular channel

m � 2~bC
2=3
A ÿ�~b�2C

4=3
A for a circular tube

As shown in the above expressions the residual liquid film

thickness depends on the values of A and the power-law

index, n, as graphically shown in Fig. 5. In Fig. 5 the values

of A increase with decreasing power-law index, thereby the
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liquid film thickness increases with decreasing power-law

index. Thus, the theory presented here is inadequate for

prediction of the absolute magnitude of film thickness for a

power-law fluid.

It can be considered that the deviations between theory

and experiment for power-law ¯uids are due to inaccurate

values of the curvature coef®cient, A. The reason for these

deviations is a matching between the entrained ®lm and the

static meniscus at different, rather than equal, values of H

(1 and 1). In other words, the assumptions made in solving

Eq. (26).

This problem can be understood by examining the con-

vergence of d2H/dX2 as H!1 for two extreme cases:

n = 1, Newtonian case, and n! 0. Eq. (26) in terms of n

becomes

d3H

dX3
� �Hÿ1�n

H2n�1

For n = 1:

lim
H!1

d3H

dX3
� lim

H!1
Hÿ1

H3
� lim

H!1
1

H2
!0 (38)

For n = 0:

lim
H!1

d3H

dX3
� lim

H!1
�Hÿ1�n
H2n�1

� lim
H!1

1

H
!0 (39)

Eqs. (38) and (39) show that while both third derivatives

converge to zero, the rate of convergence is different. In the

case of n = 0, the convergence is considerably slower.

Therefore, for values of n less than 1, the second derivative

becomes constant only at a higher H and the value of A is

higher as is evidenced in Table 1. As a result m will be higher

than for n = 1.0.

As mentioned earlier, the perturbation solution is valid

only for very low capillary numbers; therefore a direct

comparison of the experimental data with the theoretical

results should be made with caution even though the experi-

mental data, in general, show that the fraction of the liquid

deposited on the tube wall increases with decreasing values

of power-law index.

Ro and Homsy [4] solved the two-dimensional ¯ow in a

Hele-Shaw cell containing a viscoelastic (Oldroyd-B) ¯uid

using an expansion in CA
1/3 and We. Their theoretical

analysis allowed them to conclude that the ®lm thickness

decreases and pressure drop at the meniscus tip increases as

the ¯uid becomes more viscoelastic. In the present analysis,

the residual liquid ®lm thickness increases with decreasing

power-law index. Thus, the trend observed for a perturba-

tion using a power-law constitutive equation differs from

that of Ro and Homsy's [4] perturbation analysis.

When the origin of the frame of reference is taken to be

the nose of the bubble, the gas-assisted displacement pro-

blem in terms of determining the residual liquid ®lm

thickness on the wall becomes very similar to the free

coating of a vertically withdrawn plate from the liquid

reservoir. The results of this analysis for non-Newtonian

¯uids were compared with the experimental results of the

free coating of a vertically withdrawn plate from a non-

Newtonian ¯uid reservoir.

Fig. 4. Effect of the power-law index n on the liquid film thickness for perturbation solution.

Fig. 5. Variation of the curvature coefficient, A with power-law index, n.
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According to the singular perturbation method non-New-

tonian ¯uids give a higher residual liquid ®lm thickness than

for a corresponding Newtonian ¯uid although the experi-

mental results by Tallmadge [13,14] and Spiers et al. [15]

showed that the residual liquid ®lm thickness of non-New-

tonian ¯uids on a vertically withdrawn plate from a liquid

reservoir is smaller than that of Newtonian ¯uids. However,

these results were not observed in theoretical analysis by

Tallmadge [13,14].

On the other hand, it was experimentally observed that

the fraction of the liquid deposited on the tube wall for

Newtonian and non-Newtonian ¯uids is almost identical at

low capillary number (see Fig. 2). In other words, low

capillary number gas-assisted non-Newtonian ¯uid displa-

cement shows similar behaviour to Newtonian ¯uid dis-

placement at low capillary number. A similar trend was

observed using a perturbation analysis for a power-law

constitutive equation at low capillary number. As can be

seen in Fig. 4 the effect of the power-law index on values of

l was not very pronounced at low capillary number. In other

words, at low capillary number the residual liquid ®lm

thickness of power-law ¯uids is almost independent of

the value of power-law index.

6. Conclusions

A perturbation analysis using a power-law constitutive

equation does not correctly predict the variation of the

residual liquid ®lm thickness as a function of the power-

law index. The residual liquid ®lm thickness is predicted to

increase with decreasing power-law index which is opposite

to the experimental observation of previous investigators.

However it was experimentally observed that the fraction of

the liquid deposited on the tube wall for Newtonian and non-

Newtonian ¯uids is almost identical at low capillary num-

ber. Using a perturbation analysis a similar trend was also

observed, namely the residual liquid ®lm thicknesses for

various values of the power-law index are almost identical at

low capillary numbers.
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